PSLV-C40/Cartosat-2 Series
Jan 12, 2018

GSLV-F08/GSAT-6A
March 29, 2018

PSLV-C41/ IRNSS-1I
April 12, 2018

CES Technology Demonstrator
July 05, 2018

PSLV-C42 Mission
September 16, 2018

PSLV-C43 / HysIS Mission
November 29, 2018

GSAT-11 Mission
December 05, 2018

GSLV-F11 /GSAT-7A
December 19, 2018
हमारे देश ने संकल्प किया है कि 2022, जब आजादी के 75 साल होंगे तब या हो सके तो उससे पहले, आजादी के 75 साल मनाएंगे तब, मां भारत की कोई संतान चाहे बेटा हो या बेटी, कोई भी हो सकता है। वे अंतरिक्ष में जाएंगे। हाथ में तिरंगा झंडा लेकर के जाएंगे। आजादी के 75 साल के पहले इस सपने को पूरा करना है...........
Gaganyaan - A National Endeavour

Technology and Capability Demonstrator

Employment (>13k) skill generation

Micro gravity experiments

Vibrant citizen participation

Spin-offs to Society

Galvanize High tech aerospace industry

Transforming India

Inspire and motivate youth

Boost innovation and creativity
GAGANYAAN Mission

- CM-SM Separation
- CM re-entry
- SM re-entry
- Aero braking
- Parachute deployment
- Splash down
- Ascent & Descent phases - 100% visibility
- Launch vehicle Lift-off

- Ascent & Descent phases - 100% visibility
- De-boost
- Ascent Trajectory
- Orbital Module separation
- Splash down
- Orbital module
- 400 km LEO Orbit
- 120 km Orbit
- ~16 mins to reach orbit
- ~36 mins from de-boost to splash down
- CM-SM Separation
- Solar array deployment
- Reorientation
- De-boost
- CM-SM Separation
- CM re-entry
- SM re-entry
- Aero braking
- Parachute deployment
- Splash down
- Ascent & Descent phases - 100% visibility
- Launch vehicle Lift-off

- Ascent & Descent phases - 100% visibility
- De-boost
- Ascent Trajectory
- Orbital Module separation
- Splash down
- Orbital module
- 400 km LEO Orbit
- 120 km Orbit
- ~16 mins to reach orbit
- ~36 mins from de-boost to splash down
- CM-SM Separation
- Solar array deployment
- Reorientation
- De-boost
- CM-SM Separation
- CM re-entry
- SM re-entry
- Aero braking
- Parachute deployment
- Splash down
- Ascent & Descent phases - 100% visibility
- Launch vehicle Lift-off

- Ascent & Descent phases - 100% visibility
- De-boost
- Ascent Trajectory
- Orbital Module separation
- Splash down
- Orbital module
- 400 km LEO Orbit
- 120 km Orbit
- ~16 mins to reach orbit
- ~36 mins from de-boost to splash down
- CM-SM Separation
- Solar array deployment
- Reorientation
- De-boost
- CM-SM Separation
- CM re-entry
- SM re-entry
- Aero braking
- Parachute deployment
- Splash down
- Ascent & Descent phases - 100% visibility
- Launch vehicle Lift-off

- Ascent & Descent phases - 100% visibility
- De-boost
- Ascent Trajectory
- Orbital Module separation
- Splash down
- Orbital module
- 400 km LEO Orbit
- 120 km Orbit
- ~16 mins to reach orbit
- ~36 mins from de-boost to splash down
- CM-SM Separation
- Solar array deployment
- Reorientation
- De-boost
- CM-SM Separation
- CM re-entry
- SM re-entry
- Aero braking
- Parachute deployment
- Splash down
- Ascent & Descent phases - 100% visibility
- Launch vehicle Lift-off

- Ascent & Descent phases - 100% visibility
- De-boost
- Ascent Trajectory
- Orbital Module separation
- Splash down
- Orbital module
- 400 km LEO Orbit
- 120 km Orbit
- ~16 mins to reach orbit
- ~36 mins from de-boost to splash down
- CM-SM Separation
- Solar array deployment
- Reorientation
- De-boost
- CM-SM Separation
- CM re-entry
- SM re-entry
- Aero braking
- Parachute deployment
- Splash down
- Ascent & Descent phases - 100% visibility
- Launch vehicle Lift-off

- Ascent & Descent phases - 100% visibility
- De-boost
- Ascent Trajectory
- Orbital Module separation
- Splash down
- Orbital module
- 400 km LEO Orbit
- 120 km Orbit
- ~16 mins to reach orbit
- ~36 mins from de-boost to splash down
- CM-SM Separation
- Solar array deployment
- Reorientation
- De-boost
- CM-SM Separation
- CM re-entry
- SM re-entry
- Aero braking
- Parachute deployment
- Splash down
- Ascent & Descent phases - 100% visibility
- Launch vehicle Lift-off

- Ascent & Descent phases - 100% visibility
- De-boost
- Ascent Trajectory
- Orbital Module separation
- Splash down
- Orbital module
- 400 km LEO Orbit
- 120 km Orbit
- ~16 mins to reach orbit
- ~36 mins from de-boost to splash down
- CM-SM Separation
- Solar array deployment
- Reorientation
- De-boost
- CM-SM Separation
- CM re-entry
- SM re-entry
- Aero braking
- Parachute deployment
- Splash down
- Ascent & Descent phases - 100% visibility
- Launch vehicle Lift-off

- Ascent & Descent phases - 100% visibility
- De-boost
- Ascent Trajectory
- Orbital Module separation
- Splash down
- Orbital module
- 400 km LEO Orbit
- 120 km Orbit
- ~16 mins to reach orbit
- ~36 mins from de-boost to splash down
- CM-SM Separation
- Solar array deployment
- Reorientation
- De-boost
- CM-SM Separation
- CM re-entry
- SM re-entry
- Aero braking
- Parachute deployment
- Splash down
- Ascent & Descent phases - 100% visibility
- Launch vehicle Lift-off

- Ascent & Descent phases - 100% visibility
- De-boost
- Ascent Trajectory
- Orbital Module separation
- Splash down
- Orbital module
- 400 km LEO Orbit
- 120 km Orbit
- ~16 mins to reach orbit
- ~36 mins from de-boost to splash down
- CM-SM Separation
- Solar array deployment
- Reorientation
- De-boost
- CM-SM Separation
- CM re-entry
- SM re-entry
- Aero braking
- Parachute deployment
- Splash down
- Ascent & Descent phases - 100% visibility
- Launch vehicle Lift-off

- Ascent & Descent phases - 100% visibility
- De-boost
- Ascent Trajectory
- Orbital Module separation
- Splash down
- Orbital module
- 400 km LEO Orbit
- 120 km Orbit
- ~16 mins to reach orbit
- ~36 mins from de-boost to splash down
- CM-SM Separation
- Solar array deployment
- Reorientation
- De-boost
- CM-SM Separation
- CM re-entry
- SM re-entry
- Aero braking
- Parachute deployment
- Splash down
- Ascent & Descent phases - 100% visibility
- Launch vehicle Lift-off

- Ascent & Descent phases - 100% visibility
- De-boost
- Ascent Trajectory
- Orbital Module separation
- Splash down
- Orbital module
- 400 km LEO Orbit
- 120 km Orbit
- ~16 mins to reach orbit
- ~36 mins from de-boost to splash down
- CM-SM Separation
- Solar array deployment
- Reorientation
- De-boost
- CM-SM Separation
- CM re-entry
- SM re-entry
- Aero braking
- Parachute deployment
- Splash down
- Ascent & Descent phases - 100% visibility
- Launch vehicle Lift-off
CITIZEN OUTREACH PROGRAMME

Media platforms

Social media

Training

Workshops

Exhibitions

Seminars

Student interactions

Spur Research & Development

Motivate

Technology Spinoffs

Improve Industrial Capability

INDIAN CITIZENS

INDIAN DIASTRORA
Chandrayaan-2 Mission

- To land near South Pole
- Scientifically Important

Opportunity to name the landing site, which will be of historical significance

EPO: 170 x 40400 km
Lunar Transfer Trajectory
EBNs

Insertion to Lunar Orbit

100 x 100 km

Landing site
Dr. Vikram Sarabhai Centenary Programme

- 6 ISRO knowledge centers
- Space Technology Incubation centers
- VIKRAM name for Moon-lander for Chandrayan-2
- Exhibitions/ Lectures
- Space Clubs at Schools
- Competitions at School/College level
- Events / Pavilions at National Museums
- Awards / Scholarships / Fellowships
- Vikram Sarabhai Space Innovative Award
- ISRO TV

- Dedicated Sessions / Memorial Lectures at International Science conferences like IAF
- Dr. Sarabhai Centenary International Award for best achievement in Space Science & Technology
- Establishment of Department Chairs / Fellowships at universities, which were connected with Dr. Sarabhai during his education.
Small Satellite Launch Vehicle

... on demand access to Space

Features

- Launch Vehicle catering to Mini, Micro or Nano satellites
- Low cost Launch Vehicle encompassing heritage systems and less complex / modular sub-systems
- On demand launch capability: Stages prepared as modular units, demand to launch within 2 weeks
- Active load relief enabling any time launch requirements
- Minimum launch-pad occupancy: Integration & Launch with in 24 hours

VEHICLE CONFIGURATION

- 2m diameter x 34m long
- Lift off mass: ~120T
- Three Solid propulsion stages
- Liquid propulsion module as terminal stage for precise payload injection

Payload Capability (Typical - from SDSC/SHAR)

- Orbit: 500 km LEO
- Inclination: 45°
- Payload: 500 kg
Mission Objectives:

- Demonstration of Approach and Landing maneuvers of a typical Orbital mission
- Autonomous runway landing of RLV

Execution:

- Landing Experiment will be demonstrated by ISRO with the support of IAF and DRDO
- RLV is lifted by helicopter and released to land on the runway autonomously
- Mission planned in middle of this year